CD4054BF3A

Texas Instruments CD4054BF3A

Part Number:
CD4054BF3A
Manufacturer:
Texas Instruments
Ventron No:
6370198-CD4054BF3A
Description:
Military single 3-V to 18-V buffer
ECAD Model:
Datasheet:
cd4054b-mil

Quick Request Quote

Please send RFQ , We will respond immediately.

Part Number
Quantity
Company
E-mail
Phone
Comments
Specifications
Texas Instruments CD4054BF3A technical specifications, attributes, parameters and parts with similar specifications to Texas Instruments CD4054BF3A.
  • Technology family
    CD4000
  • Supply voltage (min) (V)
    3
  • Supply voltage (max) (V)
    18
  • Number of channels
    4
  • IOL (max) (mA)
    3.6
  • Supply current (max) (μA)
    3000
  • IOH (max) (mA)
    -1.9
  • Input type
    Standard CMOS
  • Output type
    Push-Pull
  • Features
    Input clamp diode
  • Rating
    Military
  • Operating temperature range (°C)
    -55 to 125
Description

CD4055B and CD4056B types are single-digit BCD-to-7-segment decoder/driver circuits that provide level-shifting functions on the chip. This feature permits the BCD input-signal swings (VDD to VSS) to be the same as or different from the 7-segment output-signal swings (VDD to VEE). For example, the BCD input-signal (VDD to VSS) may be as small as 0 to -3 V, whereas the output-display drive-signal swing (VDD to VEE) may be as large as from 0 to -15 V. If VDD to VEE exceeds 15 V, VDD to VSS should be at least 4V (0 to -4V). The 7-segment outputs are controlled by the DISPLAY-FREQUENCY (DF) input which causes the selected segment outputs to be low, high, or a square-wave output (for liquid-crystal displays). When the DF input is low the output segments will be high when selected by the BCD inputs. When the DF input is high, the output segments will be low when selected by the BCD inputs. When a square-wave is present at the DF input, the selected segments will have a square-wave output that is 180° out of phase with the DF input. Those segments which are not selected will have a square-wave output that is in phase with the input. DF square-wave repetition rates for liquid-crystal displays usually range form 30 Hz (well above flicker rate) to 200 Hz (well below the upper limit of the liquid-crystal frequency response). The CD4055B provides a level-shifted high-amplitude DF output which is required for driving the common electrode in liquid-crystal displays. The CD4056B provides a strobed-latch function at the BCD inputs. Decoding of all input combinations on the CD4055B and CD4056B provides displays of 0 to 9 as well as L, P, H, A, -, and a blank position.

The CD4054B provides level shifting similar to the CD4055B and CD4056B independently strobed latches, and common DF control on 4 signal lines. The CD4054B is intended to provide drive-signal compatibility with the CD4055B and CD4056B 7-segment decoder types for the decimal point, colon, polarity, and similar display lines. A level-shifted high-amplitude DF output can be obtained from any CD4054B output line by connecting the corresponding input and strobe lines to a low and high level, respectively and applying a square wave to DFIN. The CD4054B may also be utilized for logic-level "up conversion" or "down conversion". For example, input-signal swings (VDD to VSS) for 5 to 0 V can be converted to output-signal swings (VDD to VEE) of 5 to -5 V. The level-shifted function on all three types permits the use of different input- and output-signal swings. The input swings from a low level of VSS to a high level of VDD while the output swings from a low level of VEE to the same high level of VDD. Thus, the input and output swings can be selected independently of each other over a 3-to 18 V range. VSS may be connected to VEE when no level-shift function is required.

For the CD4054B and CD4056B, data are transferred from input to output by placing a high voltage level at the strobe input. A low voltage at the strobe input latches the data input and the corresponding output segments remain selected (or non-selected) while the strobe is low.

Whenever the level-shifing function is required, the CD4055B can be used by itself to drive a liquid-crystal display (Fig.16 and Fig.20). The CD4056B, however, must be used together with a CD4054B to provide the common DF output (Fig.19). The capability of extending the voltage swing on the negative end (this voltage cannot be extended on the positive end) can be used to advantage in the setup of Fig.18. Fig.17 is common to all three types.

The CD4054B-, CD4055B-, and CD4056B-series types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD4054B- and CD4056B-series types also are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix).

CD4054BF3A More Descriptions
Military single 3-V to 18-V buffer 16-CDIP -55 to 125
CMOS 4-Segment Liquid-Crystal Display Driver 16-CDIP -55 to 125
Latch/Decoder/Driver Single 4-to-4 16-Pin CDIP Tube
ICLCD DISPLAY DRIVER4-SEG0-BPCMOSDIP16PINCERAMIC
CD4054B-MIL CMOS 4-SEGMENT LIQUI
Certification
  • ISO 9001
  • ISO 13485
  • ISO 45001
  • ASA
  • ESD
  • DUNS
  • SMTA
  • ROHS

Latest News

  • 28 September 2023

    MPSA56 PNP General Purpose Transistor: Features, Working Principle and Application

    Ⅰ. Overview of MPSA56Ⅱ. Symbol and footprint of MPSA56Ⅲ. Technical parametersⅣ. Features of MPSA56Ⅴ. Pinout and package of MPSA56Ⅵ. How does MPSA56 work?Ⅶ. How does the MPSA56 transistor...
  • 28 September 2023

    TIP35C Footprint, Package, Application and Other Details

    Ⅰ. Overview of TIP35CⅡ. Symbol and footprint of TIP35CⅢ. Technical parametersⅣ. Features of TIP35CⅤ. Pinout and package of TIP35CⅥ. Working principle of TIP35C audio power amplifierⅦ. Application of...
  • 07 October 2023

    An Introduction to TDA7266SA Dual Bridge Amplifier

    Ⅰ. What is TDA7266SA?Ⅱ. Symbol, footprint and pin connection of TDA7266SAⅢ. Technical parametersⅣ. Features of TDA7266SAⅤ. How to configure the gain of TDA7266SA?Ⅵ. How is the short circuit...
  • 07 October 2023

    How does IRF640 differ from IRF740?

    Ⅰ. What is MOSFET?Ⅱ. Overview of IRF640Ⅲ. Overview of IRF740Ⅳ. IRF640 vs IRF740: SymbolⅤ. IRF640 vs IRF740: Technical parametersⅥ. IRF640 vs IRF740: FeaturesⅦ. IRF640 vs IRF740: Working principleⅧ....
  • cost

    Help you to save your cost and time.

  • package

    Reliable package for your goods.

  • fast

    Fast Reliable Delivery to save time.

  • service

    Quality premium after-sale service.