SN74HCT00PWR

Share:

Texas Instruments SN74HCT00PWR

Part Number:

SN74HCT00PWR

Manufacturer:

Texas Instruments

Ventron No:

3834425-SN74HCT00PWR

Description:

IC GATE NAND 4CH 2-INP 14-TSSOP

ECAD Model:

Datasheet:

SN74HCT00PWR

Payment:

Payment

Delivery:

Delivery

Quick Request Quote

Reference Price ( In US Dollars )

Pricing

Qty

Unit Price

Ext Price

  • 1

    $0.2583

    $0.26

  • 10

    $0.2151

    $2.15

  • 30

    $0.1966

    $5.90

  • 100

    $0.1735

    $17.35

  • 500

    $0.1632

    $81.60

  • 1000

    $0.1570

    $157.00

Do you want a lower wholesale price? Please send us an inquiry, and we will respond immediately.
Quantity
Comments
  • One Stop Service

    One Stop Service

  • Competitive Price

    Competitive Price

  • Source Traceability

    Source Traceability

  • Same Day Delivery

    Same Day Delivery

Part Pictures

  • SN74HCT00PWR Detail Images

Part Overview

Description
The SN74HCT00 is a quadruple 2-input positive-NAND gate. It performs the Boolean function Y = A B or Y = A B in positive logic.

Features
Operating voltage range of 4.5 V to 5.5 V
Outputs can drive up to 10 LSTTL loads
Low power consumption, 20-μA max Icc
Low input current of 1 μA max
Inputs are TTL-voltage compatible

Applications
General-purpose logic
Data processing
Telecommunications
Industrial control

Specifications

Texas Instruments SN74HCT00PWR technical specifications, attributes, parameters and parts with similar specifications to Texas Instruments SN74HCT00PWR.

  • Factory Lead Time
    6 Weeks
  • Lifecycle Status
    ACTIVE (Last Updated: 3 days ago)
  • Contact Plating
    Gold
  • Mount
    Surface Mount
  • Mounting Type

    Mounting Type refers to the method by which an electronic component is attached to a printed circuit board (PCB) or other surface. Common mounting types include: * Through-hole: Component leads are inserted into holes in the PCB and soldered on the other side. * Surface-mount: Component is placed on the surface of the PCB and soldered in place. * Press-fit: Component is pressed into place on the PCB without soldering. * Socket: Component is inserted into a socket on the PCB, allowing for easy replacement. The mounting type is determined by factors such as the component's size, shape, and power requirements.

    Surface Mount
  • Package / Case

    Package / Case refers to the physical housing or enclosure that encapsulates an electronic component. It provides protection, facilitates handling, and enables electrical connections. The package type determines the component's size, shape, pin configuration, and mounting options. Common package types include DIP (dual in-line package), SOIC (small outline integrated circuit), and BGA (ball grid array). The package also influences the component's thermal and electrical performance.

    14-TSSOP (0.173, 4.40mm Width)
  • Number of Pins

    Number of Pins: Indicates the number of electrical connections available on the component. These pins are used to connect the component to other components or circuits on a printed circuit board (PCB). The number of pins determines the functionality and connectivity options of the component. It is important to ensure that the component has the correct number of pins for the intended application.

    14
  • Weight
    57.209338mg
  • Operating Temperature

    Operating Temperature is the range of temperatures at which an electronic component can function properly. It is typically specified in degrees Celsius (°C) and indicates the minimum and maximum temperatures at which the component can operate without experiencing damage or degradation. Operating Temperature is an important parameter to consider when designing electronic circuits, as it ensures that the components will function reliably in the intended operating environment.

    -40°C~85°C
  • Packaging
    Cut Tape (CT)
  • Series

    Series, in the context of electronic components, refers to the arrangement of components in a circuit. When components are connected in series, they form a single path for current to flow through. The total resistance of a series circuit is the sum of the individual resistances of each component. Series connections are often used to control the flow of current in a circuit, as the total resistance can be adjusted by changing the number or type of components in the series.

    74HCT
  • JESD-609 Code
    e4
  • Pbfree Code
    yes
  • Part Status

    Part Status is an electronic component parameter that indicates the availability and production status of a component. It is typically used to inform customers about the availability of a component, whether it is in production, end-of-life, or obsolete. Part Status can also provide information about any restrictions or limitations on the component's use, such as whether it is only available for certain applications or if it has been discontinued.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a measure of the susceptibility of a surface mount electronic component to moisture-induced damage during soldering. It is classified into six levels, from 1 (least sensitive) to 6 (most sensitive). MSL is determined by the materials used in the component's construction, including the solderability of its terminals and the presence of moisture-absorbing materials. Components with higher MSL ratings require more stringent handling and storage conditions to prevent moisture absorption and subsequent damage during soldering.

    1 (Unlimited)
  • Number of Terminations
    14
  • ECCN Code
    EAR99
  • Subcategory
    Gates
  • Packing Method
    TR
  • Technology

    Technology, in the context of electronic components, refers to the specific manufacturing process and materials used to create the component. It encompasses the semiconductor fabrication techniques, such as the type of transistor used (e.g., MOSFET, BJT), the gate oxide thickness, and the interconnect materials. Technology also includes the packaging type, such as surface mount or through-hole, and the leadframe or substrate material. The technology used impacts the component's performance characteristics, such as speed, power consumption, and reliability.

    CMOS
  • Voltage - Supply
    4.5V~5.5V
  • Terminal Position
    DUAL
  • Terminal Form
    GULL WING
  • Peak Reflow Temperature (Cel)
    260
  • Number of Functions
    4
  • Supply Voltage

    Supply Voltage is the voltage required to power an electronic component. It is typically measured in volts (V) and is specified in the component's datasheet. The supply voltage must be within the specified range for the component to function properly. If the supply voltage is too low, the component may not function at all. If the supply voltage is too high, the component may be damaged.

    5V
  • Base Part Number
    74HCT00
  • Pin Count
    14
  • Number of Outputs

    Number of Outputs refers to the number of independent output signals or channels that an electronic component can provide. It indicates the capability of the component to drive multiple external devices or circuits simultaneously. A higher number of outputs allows for greater flexibility and connectivity in electronic systems.

    1
  • Operating Supply Voltage
    5V
  • Number of Elements
    4
  • Power Supplies
    5V
  • Load Capacitance

    Load Capacitance (CL) is a parameter that specifies the maximum capacitance that can be connected to the output of an electronic component without affecting its performance. It is typically measured in picofarads (pF) or nanofarads (nF). A high load capacitance can cause the output voltage to drop or the output current to increase, which can lead to instability or damage to the component.

    50pF
  • Output Current

    Output Current is the maximum amount of current that an electronic component can deliver to a load without exceeding its specified operating limits. It is typically measured in amperes (A) or milliamperes (mA). Output Current is a critical parameter for selecting electronic components, as it determines the amount of power that the component can provide to a load.

    4mA
  • Propagation Delay
    18 ns
  • Quiescent Current

    Quiescent current is the amount of current drawn by an electronic component when it is not actively performing its intended function. It is typically measured in milliamps (mA) or microamps (µA). Quiescent current is important because it can affect the overall power consumption of a circuit, especially in battery-powered devices. Components with high quiescent current can drain batteries more quickly than those with low quiescent current.

    2μA
  • Turn On Delay Time
    22 ns
  • Family
    HCT
  • Logic Function
    NAND
  • Number of Inputs

    The number of inputs of an electronic component refers to the number of separate signals or data streams that the component can receive and process simultaneously. It indicates the maximum number of external connections that can be made to the component to provide input signals. This parameter is crucial for determining the functionality and connectivity of the component within a circuit or system.

    2
  • Current - Output High, Low
    4mA 4mA
  • Logic Type

    Logic Type refers to the type of logic implemented by an electronic component, such as a logic gate or flip-flop.

    NAND Gate
  • Max Propagation Delay @ V, Max CL
    18ns @ 5.5V, 50pF
  • Schmitt Trigger
    NO
  • Logic Level - Low
    0.8V
  • Logic Level - High

    Logic Level - High refers to the voltage level that represents a logical "1" in a digital circuit. It is typically defined as a voltage range that is higher than a specified threshold voltage. The specific value of the Logic Level - High depends on the logic family being used, such as TTL, CMOS, or ECL. For example, in TTL logic, the Logic Level - High is typically defined as a voltage between 2.4V and 5V.

    2V
  • Height

    Height, in the context of electronic components, refers to the vertical dimension of the component. It is typically measured in millimeters (mm) or inches (in). Height is an important parameter to consider when designing and assembling electronic circuits, as it affects the overall size and form factor of the device. Components with a smaller height are often preferred for applications where space is limited, such as in portable devices or embedded systems.

    1.2mm
  • Length

    Length, in the context of electronic components, refers to the physical dimension of a component along its longest axis. It is typically measured in millimeters (mm) or inches (in). Length is a crucial parameter for determining the physical size and space requirements of a component on a printed circuit board (PCB) or other assembly. It also affects the component's electrical characteristics, such as inductance and capacitance, which can be influenced by the length of conductors or traces within the component.

    5mm
  • Width
    4.4mm
  • Thickness

    Thickness, in the context of electronic components, refers to the vertical distance between two opposing surfaces of a component. It is typically measured in millimeters (mm) or inches (in). Thickness is a crucial parameter that affects the component's physical dimensions, weight, and performance characteristics. It influences factors such as heat dissipation, electrical insulation, and mechanical stability. Thinner components generally offer better heat dissipation and space efficiency, while thicker components may provide enhanced durability and structural integrity.

    1mm
  • Radiation Hardening
    No
  • RoHS Status
    ROHS3 Compliant
  • Lead Free
    Lead Free

Certification

  • ISO 9001
  • ISO 13485
  • ISO 45001
  • ASA
  • ESD
  • DUNS
  • SMTA
  • ROHS

Latest News